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Linear logistic classification Training of a Neural Network
« How do we learn a classifier (i.e. learn 6, 6,)?\ €9 .
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canada_immigration.csv
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Introduction-to-Matplotlib-and-Line-Plots.ipynb

Aquestion

Iwant to ask a question. For image classification, if data preprocessing and feature engineering are done
classification algorithm?

Unread | ©

Reply

Willan Mo

155m

Hi Yizhi, the choice of classification algorithm does matter a lot. And the impact should be dominant.
Besides, current transformer-based CNN should outperform typical CNN.etc
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Digital twin is a concept that creates a model of a physical asset for predictive

maintenance. This model will continually adapt to changes in the environment or
operation using real-time sensory data and can forecast the future of the corresponding
physical assets
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What can go wrong in practice?

* Sometimes th_ere isn't a unique best hyperplane
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= Sometimes there’s technically a unique best
hyperplane, but just because of noise
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2. What is the end goal of an agent?

Agents are software programs that make intelligent decisions. They are basically
reinforcement learners. The ultimate goal of proxy is to maximize the expectation of
this long-term return for each state.

3. What are the main differences between supervised learning and RL?
Supervised learning: provide data, predict tags. For example, predict the pictures of
animals, cats and dogs, and predict the label as cat or dog.

RL: Compared with supervised learning, reinforcement learning has lower cost but
higher accuracy. It uses the data with and without class labels to generate appropriate
classification functions. It uses unlabeled data, but reinforcement learning algorithm
to learn whether closer to the target, I understand as incentive and penalty function.
Similar to life, girlfriends constantly adjust straight boyfriend into a warm man.

4. What are the benefits of combining deep learning and RL?

In traditional reinforcement learning, when the state and action space are discrete and
the dimension is not high, g-table can be used to store the Q value of each state action
pair. However, the more complex task which is closer to the actual situation often has
a large state space and continuous action space. In this case, using g-table is not
realistic. At the same time, the realization of end-to-end control is also required to be
able to process high-dimensional data input, such as image, sound and so on. Deep
learning can just cope with high-dimensional input. If the two can be combined, the
agent will have the ability of understanding deep learning and decision-making ability
of reinforcement learning at the same time.
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Five Gradient Boosting
Gradient Boosting -

| [Teiningsetscore [ Testsetscore |

Default model 0917 0.792
max_depth=1 0.804 0.781
learning_rate=0.01 0.802 0.766
Table 2: model wning 2
(Set Max_Depth =1 i ing_ Rate = 0.01

Pltting the importance of features

change max_depth and learning_rate can
reduce the accuracy of the training set, but
neither method improves the accuracy of the
test set.

olucose is the most important feature.
BMI (body mass index) is the second
important information feature.

Figure
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Research on diabetes prediction based on machine w» 4 Comparative analysis of experimental results
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Table 3 Detailed model results
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JinggiKang LinLi Liming Cao  Wuyang Wang Logistic Regression 755 3
785 166
) Abstra Decision Tree L i
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3 1o statistics, the prevalence of diabetes in adults has andom Fore TS0 XES
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s modeling to predict the risk of diabetes in the general population, find high-risk groups, and then 0.302 0.766
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B Based on the project of “machine learning and data science™ of MIT, this paper analyzes the SVM (mj L
s risk factors of diabetes, and obtains the risk factors significantly related to diabetes by binary AL Z
10 prediction of the characteristic variables of the data set provided free of charge on GitHub website. — 577
" e learning algorithm has better accuracy and generalization ability in dealing with — e
72 more complex problems. We use seven machine lcarning model methods (o build simple machine Neural Network T —on—
12 leamning simulation. The choice of various parameters and kemel function of the model has more _——— T o
14 or less influence on the prediction results. In this study. we observed the influence of the change
15 of kernel function parameters such as learning rate and penalty factor on the prediction results, and
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21 Keywords: diabetes mellitus: risk factors: machine learning: heighbor w theme mples.
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100 — training accuracy
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s improve the health status of residents and prolong the life expectancy. m -
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In the winter vacation of 2021, I carried out the online scientific research project of the holiday, and I got a |




ot of harvest and a lot of emotion! After a month and a half of learning, I learned a lot of complex and intere
sting knowledge, such as deep learning and so on. This enables me to understand not only the vastness of th
e ocean of knowledge, but also the vastness of the world. As a little Bai who has hardly been in touch with s
cientific research projects, I feel the charm of scientific research and the preciseness of scientific research. S
ince then, I have a strong admiration for scientific researchers. In this project, teachers always maintain a ser
ious and responsible attitude, in the Spring Festival still insist on class, very moved, thank you!!!
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I A AR, ARG, RIRETE R 7, HR AT UE B EERAG, Ed Xk,
A 2B 7P ST R AR, R R A S AR 5 S A RO, DR B I 75 T A KR
AR, @dXies>), Wl VAR, SRR T SR, FEAR R IREE T % L2 T #R
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How time flies, imperceptibly, this study is over, but we have a long way to go; Through this study, I learned
the knowledge of machine learning, which will be of great help to my future study in this field. I used to reject
this knowledge, but after this study, I changed my attitude and developed some interest in this knowledge. In
this course, all the teachers are very responsible; It's a great honor to participate in this project. Although our
team did not perform well in the end, I still want to thank all the teachers and students.

HEMKRFEE R RFERE 2ET5H

XFTIX R H AR ERA NN RIREIIN . BB A ke TARBRY:, ARSI, 30
AIRWA—HE, FEXTTHLER 2] SEAR R G B8R, MO 4EE 75 58 T R ITH T80 45 T
RAFEAR N TR — S S E B . EERRRRAT RN . BINE 5 I AR
W, — B IR ORI OB T IRAT IS, AR BE RS AE PR AT R R X ORFR I RN, i
AEMEFIAR . HIRIAFHOEZIMA 2 AT A EZ W ES), AR R0 TIriklrfE. &
NIRRT, FAERBICNIZ WM bRk

I personally think this project is very successful on the whole. After all, students come from different
universities, different majors, learning steps are not the same, in machine learning and data science attainments
are also deep, so it is very difficult to consider the completion of the project. Some suggestions for
improvement are provided below:

It is mainly the advance acquisition of classroom content documents, because the language is not proficient,
the efficiency of a class is very dependent on pre-class preparation, if you can get the outline of this course
early before class, there should be better results. Secondly, I think teachers and students can interact more, not
just listen and understand. Again, I think after class, students' notes should also be included in the scoring
criteria.

HEMKRF LT BRER 45 192 EHF

IOG R, FREREONINE 40 REVE EIRIE &GN, AR RN B)—k 550K, Si)a Mo
FI B — s /NN 2, FOR BT e RS2 21l AR, JSoRiiF, miHRER A ARZ,
WA —— 368, MR ZREHUER Ty, ERKRZE T RB L REBIRN . BUFEZERD AR —
e FRHRECA BRI ) 7y B ] DB IR — 28, i BRI SURR 4542 . A IR
FGHEKINE, ERREE RN ER, SRS, HRE - REEFEEL, BT
B . XIS T EE

Time flies. In a twinkling of an eye, the nearly 50-day online course has ended. It’s very emotional to recall
the confusion when I first attended the class and the little satisfaction when I finished the project. In the
process of learning, I have gained a lot. There are too many advantages of the project course, so I will not
elaborate on them one by one. Of course, I will continue to learn a lot in the future. Here are some of my




personal suggestions. It is hoped that the saving time of each teaching recording screen can be delayed or sent
to students directly in the form of files. Sometimes when you learn the following content and want to review
the previous content, the recording screen has expired. I hope that every time Professor’s recording screen is
attached with Chinese subtitles, so that it is easier to understand.
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In this project learning, I deeply understand and use machine learning. Professor vividly introduced the basic
components of machine learning and related cutting-edge research through a large number of examples, which
inspired me a lot. Mr. Mo explained several mature machine learning principles in detail, and introduced how
to use the code and how to adjust the network parameters. Every class has benefited me a lot. I need to spend
a lot of time after class to understand the content and learn how to use it. It would be better if the class had
more code and showed the results of the operation in different situations.
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